MARYLAND DEPARTMENT OF THE ENVIRONMENT

1800 Washington Boulevard • Suite 605 • Baltimore, Maryland 21230-1719 410-537-3375 • 800-633-6101 x3375 • www.mde.state.md.us

Waste Management Administration • Solid Waste Program

Coal Combustion Byproducts (CCB) Annual Generator Tonnage Report

RECEIVED

MAR 1 1 2011

Instructions for Calendar Year 2010

COMPLIANCE

The following is general information relating to the requirement for reporting quantities of coal combustion byproducts that were managed in the State of Maryland during calendar year 2010. Please answer the questions on the form provided, attaching additional information and any requested supplemental information to the back of the form. Questions can be directed to the Solid Waste Program at (410) 537-3318 or via email at edexter@mde.state.md.us.

<u>I. Background.</u> This requirement that generators of coal combustion byproducts (CCBs) submit an annual report was instituted in the Code of Maryland Regulations COMAR 26.04.10.08, that was promulgated effective December 1, 2008. The regulation requires that any non-residential generator of CCBs submit a report to the Department by March 1 of each year describing the manner in which CCBs generated within the State were managed during the preceding calendar year. Additional information and specific instructions follow. For more detailed information, please refer to COMAR 26.04.10.08.

II. General Information and Applicability.

A. Definitions. Coal combustion byproducts are defined in COMAR 26.04.10.02B as:

- "(3) Coal Combustion Byproducts. (a) "Coal combustion byproducts" means the residue generated by or resulting from the burning of coal.
- (b) "Coal combustion byproducts" includes fly ash, bottom ash, boiler slag, pozzolan, and other solid residuals removed by air pollution control devices from the flue gas and combustion chambers of coal burning furnaces and boilers, including flue gas desulfurization sludge and other solid residuals recovered from flue gas by wet or dry methods. "

A generator of CCBs is defined in COMAR 26.04.10.02B as:

- "(9) Generator.
- (a) "Generator" means a person whose operations, activities, processes, or actions create coal combustion byproducts.
- (b) "Generator" does not include a person who only generates coal combustion byproducts by burning coal at a private residence."
- B. Applicability. If you or your company meet the definition of a generator of CCBs as defined above, you must provide the information as required below. For the purposes of this report, "you" shall hereinafter refer to the generator defined above. Please note that COMAR 26.04.10.08 requires generators of CCBs to submit an annual report to the Department

Form Number: MDE/WAS/PER.033 Date: January 16, 2009 TTY Users: 800-735-2258 Page 1 of 5

Recycled Paper

concerning the disposition of the CCBs that they generated the previous year. THIS INCLUDES CCBS THAT WERE NOT SEPERATELY COLLECTED BUT WERE PRODUCED BY THE BURNING OF COAL AND WERE DIRECTLY CONTRIBUTED TO A PRODUCT, such as cement. Where the amount cannot be directly measured, estimates based on the amount of coal burned can be used. The method of determining the volume of CCBs produced must be described.

<u>III. Required Information.</u> The following information must be provided to the Department by March 1, 2009:

A. Contact information:		
Facility Name: Mettiki Coal, LLC		
Name of Permit Holder: Mettiki Coal, LI	LC	
Facility Address: 293 Table Rock Road	Street	
Facility Address: Oakland City	Maryland State	21550 Zip
County: Garrett		
Contact Information (Person filing report	or Environmental Manager)	
Facility Telephone No.: 301-334-5336	Facility Fax No.: <u>301-334-1602</u>	
Contact Name: James C. Ashby		
Contact Title: Manager, Environmental A	Affairs	
Contact Address: 293 Table Rock Road	Street	
Contact Address: Oakland City	Maryland State	21550 Zip
Contact Email: jim.ashby@arlp.com		
Contact Telephone No.: 301-334-5336	Contact Fax No.: 301-334-1602	

For questions on how to complete this form, please call Edward Dexter, Solid Waste Program at 410-537-3318.

Facility Na	me: Mettiki Coal, LLC	CCB Tonnage	e Report – 2010						
type of coa	B. A description of the process that generates the coal combustion byproducts, including the type of coal or other raw material that generates the coal combustion byproducts. If the space provided is insufficient, please attach additional pages:								
Coal thermal dryer burning bituminous coal. Raw Coal is first sent to the preparation plant where it is washed in a water bath to reduce sulfur and ash content. In the final stage of preparation, hot air from pulverized coal burners is passed through a fuidized bed of the wet washed coal in the thermal dryer to reduce the moisture content of the processed coal from approximately 15% to approximately 5% for shipment.									
identification each type grainilar form	on of the different types of co generated. If the space provide	oducts generated during 5 calcoal combustion byproducts generated is insufficient, please attacked to Calendar 2010:	nerated and the volume of						
Reporting Year	Volume of CCB Type:	Volume of CCB Type:	Volume of CCB Type:						
2010	Dryer Ash 30,273 cu. yds/1,892 tons								
Additional									

Facility Name: Mettiki Coal, LLC	CCB Tonnage Report – 2010
D. Descriptions of any modeling or risk assessment combustion byproducts or their use, that were perferenced year. Please attach this information to the	ormed by you or your company during the
E. Copies of all laboratory reports of all chemical byproducts. Please attach this information to the re	
F. A description of how you disposed of or used you 2010, identifying:	our coal combustion byproducts in calendar
(a) The types and volume of coal combustion than described in Paragraph C above), the location and the type and volume of coal combustion bypro	on byproducts disposed of or used (if different of disposal, mine reclamation and use sites, ducts disposed of or used at each site:
Volumes presented in Table 1 are disposed in MDI Mettiki owned property near the mine in Garrett Coalkaline materials on site for reclamation.	E Permit # DM 84-101 refuse disposal site on bunty Maryland. Material is comingled with
and (b) The different uses by type and volume of co	oal combustion byproducts:
All volumes are for disposal in permitted site.	
If the space provided is insufficient, please attach a note that in subsequent years you need only provid calendar year).	additional pages in a similar format (Please e the information in Section F for the last

Facility Name: Mettiki Coal,	LLC	CCB Tonnage Repo	ort – 2010
G. A description of how you 5 years, identifying:	intend to dispose of	or use coal combustion by	products in the next
(a) The types and volu used, the location of intended of coal combustion byproduct	disposal, mine recla		he type and volume
The five (5) year average of a to be placed in our permitted of			r of ash is expected
	- 188 ₁₇ - , ,		
			<u></u>
and (b) The different inten	ded uses by type and	d volume of coal combustic	on byproducts.
Disposal/Reclamation			
If the space provided is insuff	icient, please attach	additional pages in a simila	ar format.
IV. Signature and Certificat report, and certify as to the acreport:	ion. An authorized curacy and complete	official of the generator mueness of the information con	ust sign the annual ntained in the annual
This is to certify that, to the be			d in this report and
any attached documents are tr	ue, accurate, and co	mplete.	
Michael Burch Signature		neral Manager, 301-334-5331 Elephone No. (Print or Type	3-8-2011 Date
		e.burch@arlp.com Email Address	<u></u>

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: Mettiki Dryer Ash

Ash Sampling 2010

LLI Sample # SW 6143181 LLI Group # 1221670 Account # 07329

Project Name: Ash Sampling 2010

Collected: 11/16/2010 10:30 by JA

Mettiki Coal Corporation

293 Table Rock Road

Oakland MD 21550

Submitted: 11/17/2010 09:40 Reported: 12/02/2010 10:39

MDAAR

CAT No.	Analysis Name	CAS Number	Dry Result	Dry Method Detection Limit	Dilution Factor
Metal	s	SW-846 6010B	mg/kg	mg/kg	
01643	Aluminum	7429-90-5	561	4.93	1
06944	Antimony	7440-36-0	N.D.	0.980	1
06935	Arsenic	7440-38-2	0.975 J	0.931	1
06946	Barium	7440-39-3	19.7	0.0392	1
06947	Beryllium	7440-41-7	N.D.	0.0667	1
07914	Boron	7440-42-8	1.17 J	0.873	1
06949	Cadmium	7440-43-9	N.D.	0.137	1
01650	Calcium	7440-70-2	496	6.01	1
06951	Chromium	7440-47-3	2.99	0.578	1
06952	Cobalt	7440-48-4	2.23	0.186	1
06953	Copper	7440-50-8	36.0	0.216	1
01654	Iron	7439-89-6	4,480	4.62	1
06955	Lead	7439-92-1	N.D.	0.588	1
01656	Lithium	7439-93-2	7.5	0.22	1
01657	Magnesium	7439-95-4	95.5	2.49	1
06958	Manganese	7439-96-5	5.42	0.0765	1
06960	Molybdenum	7439-98 - 7	N.D.	0.441	1
06961	Nickel	7440-02-0	7.70	0.186	1
01662	Potassium	7440-09-7	987 -	17.6	1
06936	Selenium	7782-49-2	N.D.	0.961	1
06966	Silver	7440-22-4	N.D.	0.176	1
01667	Sodium	7440-23-5	561	36.6	1
06925	Thallium	7440-28-0	N.D.	1.42	1
06971	Vanadium	7440-62-2	3.52	0.186	1
06972	Zinc	7440-66-6	0.782 J	0.647	1
		SW-846 7471A	mg/kg	mg/kg	
00159	Mercury	7439-97-6	N.D.	0.0028	1
Wet C	hemistry	SM20 2540 G	%	%	
	Moisture	n.a.	N.D.	0.50	1
, -	"Moisture" repres	sents the loss in weight of t s Celsius. The moisture resul s.			

General Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01643	Aluminum	SW-846 6010B	1	103225708001	11/19/2010 17:08	John P Hook	1
06944	Antimony	SW-846 6010B	1	103225708001	11/19/2010 17:08	John P Hook	1
	Arsenic	SW-846 6010B	1	103225708001	11/19/2010 17:08	John P Hook	1
		SW-846 6010B	1	103225708001	11/19/2010 17:08	John P Hook	1
06947	Beryllium	SW-846 6010B	1	103225708001	11/19/2010 17:08	John P Hook	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: Mettiki Dryer Ash

Ash Sampling 2010

Project Name: Ash Sampling 2010

Collected: 11/16/2010 10:30 by JA

Submitted: 11/17/2010 09:40 Reported: 12/02/2010 10:39

LLI Sample # SW 6143181 LLI Group # 1221670 Account # 07329

Mettiki Coal Corporation

293 Table Rock Road Oakland MD 21550

MDAAR

			Laborat	ory sa	mpre Anarysi	is kecord			
CAT No.	Analysis Name	Method		Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
07914	Boron	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06949	Cadmium	SW-846		1	103225708001	11/19/2010	17:08	John P Hook	1
01650	Calcium	SW-846		1	103225708001	11/19/2010	17:08	John P Hook	1
06951	Chromium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06952	Cobalt	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06953	Copper	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
01654	Iron	SW-846		1	103225708001	11/19/2010	17:08	John P Hook	1
06955	Lead	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
01656	Lithium	SW-846	6010B	1	103265708006	11/23/2010	15:27	Eric L Eby	1
01657	Magnesium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06958	Manganese	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06960	Molybdenum	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06961	Nickel	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
01662	Potassium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06936	Selenium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06966	Silver	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
01667	Sodium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06925	Thallium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06971	Vanadium	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
06972	Zinc	SW-846	6010B	1	103225708001	11/19/2010	17:08	John P Hook	1
00159	Mercury	SW-846	7471A	1	103225711001	11/18/2010	18:54	Nelli S Markaryan	1
05708	SW SW846 ICP Digest	SW-846	3050B	1	103225708001	11/18/2010	12:26	James L Mertz	1
05708	SW SW846 ICP Digest	SW-846	3050B	2	103265708006	11/22/2010	20:15	Annamaria Stipkovits	1
05711	SW SW846 Hg Digest	SW-846 modifie		1	103225711001	11/18/2010	13:33	James L Mertz	1
00111	Moisture	SM20 2	540 G	1	10326820006A	11/22/2010	22:48	Scott W Freisher	1

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Mettiki Dryer Ash

TCLP NON-VOLATILE EXTRACTION

Ash Sampling 2010

LLI Sample # TL 6143182 LLI Group # 1221670 Account # 07329

Project Name: Ash Sampling 2010

Collected: 11/16/2010 10:30 by JA

Mettiki Coal Corporation

293 Table Rock Road

Oakland MD 21550

Submitted: 11/17/2010 09:40 Reported: 12/02/2010 10:39

MDANV

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor
Metal	SW-846	6010B	mg/l	mg/l	
01743	Aluminum	7429-90-5	1.23	0.0834	1
07035	Arsenic	7440-38-2	0.0132 J	0.0098	1
07046	Barium	7440-39-3	0.432	0.0060	10
	Reporting limits were raised The barium result was perfor				
07049	Cadmium	7440-43-9	N.D.	0.0020	1
07051	Chromium	7440-47-3	N.D.	0.0034	1
07053	Copper	7440-50-8	0.0765	0.0027	1
07055	Lead	7439-92-1	N.D.	0.0069	1
07058	Manganese	7439-96-5	0.0346	0.00084	1
07036	Selenium	7782-49-2	N.D.	0.0089	1
07066	Silver	7440-22-4	0.0168	0.0023	1
07072	Zinc	7440-66-6	0.0730	0.0081	1
	SW-846	7470A	mg/l	mg/l	
00259	Mercury	7439-97-6	N.D.	0.000056	1

General Sample Comments

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01743	Aluminum	SW-846 6010B	1	103275705002	11/29/2010 11:19	Joanne M Gates	1
07035	Arsenic	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07046	Barium	SW-846 6010B	2	103275705002	11/29/2010 12:54	Joanne M Gates	10
07049	Cadmium	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07051	Chromium	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07053	Copper	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07055	Lead	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07058	Manganese	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07036	Selenium	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07066	Silver	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
07072	Zinc	SW-846 6010B	1	103275705002	11/27/2010 11:43	Eric L Eby	1
00259	Mercury	SW-846 7470A	1	103275713006	11/24/2010 07:39	Damary Valentin	1
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	103275705002	11/23/2010 20:30	Mirit S Shenouda	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	103275713006	11/23/2010 16:50	Nelli S Markaryan	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	10326-482- 0947C	11/22/2010 16:15	Darin P Wagner	n.a.

Account

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Sample Description: Mettiki Dryer Ash

SPLP NON-VOLATILE EXTRACTION

Ash Sampling 2010

LLI Sample # TL 6143183 LLI Group # 1221670

07329

Project Name: Ash Sampling 2010

Collected: 11/16/2010 10:30 by JA

Mettiki Coal Corporation

293 Table Rock Road

Oakland MD 21550

Submitted: 11/17/2010 09:40 Reported: 12/02/2010 10:39

MDAZH

CAT No.	Analysis Name	CAS Number	As Received Result	As Received Method Detection Limit	Dilution Factor	
Metal	5	SW-846 6010B	mg/l	mg/l		
01743	Aluminum	7429-90-5	2.12	0.0834	1	
07035	Arsenic	7440-38-2	0.0152 J	0.0098	1	
07046	Barium	7440-39-3	0.0786	0.00060	1	
07049	Cadmium	7440-43-9	N.D.	0.0020	1	
07051	Chromium	7440-47-3	N.D.	0.0034	1	
07053	Copper	7440-50-8	N.D.	0.0027	1	
07055	Lead	7439-92-1	N.D.	0.0069	1	
07058	Manganese	7439-96-5	0.0012 J	0.00084	1	
07036	Selenium	7782-49-2	N.D.	0.0089	1	
07066	Silver	7440-22-4	N.D.	0.0023	1	
07072	Zinc	7440-66-6	N.D.	0.0081	1	
		SW-846 7470A	mg/l	mg/l		
00259	Mercury	7439-97-6	N.D.	0.000056	1	

General Sample Comments

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01743	Aluminum	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07035	Arsenic	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07046	Barium	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07049	Cadmium	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07053	Copper	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07058	Manganese	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07036	Selenium	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07066	Silver	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
07072	Zinc	SW-846 6010B	1	103275705003	11/24/2010	07:31	Tara L Snyder	1
00259	Mercury	SW-846 7470A	1	103275713003	11/24/2010	06:55	Damary Valentin	1
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	103275705003	11/23/2010	20:30	Mirit S Shenouda	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	103275713003	11/23/2010	16:30	Nelli S Markaryan	1
01567	Synthetic Precipitation Leach	SW-846 1312	1	10326-2341- 1567A	11/22/2010	16:15	Roza S Goslawska	n.a.